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Goal of this series of talks.

The goal of these talks is threefold )

@ Category theory aimed at “free formulas” and their combinatorics

@ How to construct free objects

@ w.r.t. a functor with - at least - two combinatorial applications:
@ the two routes to reach the free algebra
@ alphabets interpolating between commutative and non commutative
worlds
@ without functor: sums, tensor and free products
© w.r.t. a diagram: colimits

© Representation theory.

© MRS factorisation: A local system of coordinates for Hausdorff groups and
fine tuning between analysis and algebra.

© This scope is a continent and a long route, let us, today, walk part of the
way together.
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Disclaimers.

Disclaimer.— The contents of these notes are by no means intended to

be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

Disclaimer Il.— The reader will find repetitions and reprises from the
preceding CCRT|[n], they correspond to some points which were skipped or
uncompletely treated during preceding seminars.
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Bits and pieces of representation theory

and how bialgebras arise

Wikipedia says

Representation theory is a branch of mathematics that studies abstract
algebraic structures by representing their elements as linear
transformations of vector spaces .../...

The success of representation theory has led to numerous generalizations.
One of the most general is in category theory.

As our track is based on Combinatorial Physics and
Experimental /Computational Mathematics, we will have a practical
approach of the three main points of view

@ Algebraic
o Geometric
@ Combinatorial

o Categorical
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Representation theory (or theories)
@ Geometric point of view
® Combinatorial point of view (Ram and Barcelo manifesto)
@ Categorical point of view

From groups to algebras

Here is a bit of rep. theory of the symmetric group, deformations,
idempotents

Irreducible and indecomposable modules

Characters, central functions and shifts.

Here are (some of) Lascoux and Schiitzenberger’s results
Reductibility and invariant inner products

Here stands Joseph's result

Commutative characters

Here are time-ordered exponentials, iterated integrals, evolution equations
and Minh's results

Lie groups Cartan theorem
Here is BTT
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CCRT][26] Representation theory and tensor products
(deformations and coherence).

Plan (this and next talks)

© What are universal problems 7 (through examples: w.r.t. a functor, a
diagram, Bourbaki's a-applications)

@ What is a tensor product ?

© Free (noncommutative) algebra

© Fonctors M — Liex(M), T,S

© Another tensor product (Hecke algebra at g = 0)
@ Monoidal categories

@ Mc Lane coherence theorem and associators

© Concluding remarks
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Back to the beginning: Universal Problems,
heteromorphisms and adjunctions
@ With respect to a functor.—

@ Let Clerr, Cright be two categories and F : Cyight — Clesr @ (covariant)
functor between them

Cleft < £ C'right“
U ::7716 777777777 } V
JZ/\\\‘\\\ P
~3
Free(U)

Figure: A solution of the universal problem w.r.t. the functor F is the datum, for
each U € Cpes, of a pair (ju, Free(U)) (with ju € Hom(U, F[Free(U)]),

Free(U) € Crignt) such that, for all f € Hom(U, F[V]) it exists a unique

f € Hom(Free(U), V) with F[f] o jy = f. Elements in Hom(U, F[V]) are called
heteromorphisms their set is noted Hets(U, V).

(Vf € Hom(U, F[V])) (3! f € Hom(Free(U), V))(F(f) o jy = f)
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In this case, the pair U — Free(U) is, in fact, a functor.
Which, in turn, will prove to be left-adjoint to F

Cleft £ Cright
bh :::*jggil ********** ; G(L2)

gzﬂ j\f:: ><::::/ T@::G(gm)
U 76w

Figure: Making a free functor G (= Free) from F: for any morphism

g2 € Hom(Ux, U>), G(gn1) is the unique morphism in Hom(Uy, U>) such that
FlG(gn)l o = jogr (%)

We now prove that G is a functor.

@ If Uy = U and g1 = /dul, then j1 =j2 =j2g21 and F[IdG(Ul)] O_j1 :jl =j2g21
hence G[ldy,] = ldg(u,)

@ A remark: Het(?,?) is intended to give a symmetric middle term/step to the
adjunction chain Hom(U, F[V]) =: Hete(U, V) ~ Het®(U, V) := Hom(G(U), V)
~ being constructed by a set of bijections.
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Functor G from Free/2

@ Let now Uy %, Uy « ¥ , Us be a chain of Ciere-morphisms.
We have

F[G(g21)] o1 = j2 0 g1 and F[G(g32)] 02 = ja © g3
then o
2

F[G(gx) o G(gn)] o j1 & F[G(gn)] o F[G(gn)] 0 &
F[G(g32)] 0j2 0 g1 (:3)j3 0 g32 0 821
(1) because F is a functor, (2) is Eq. (**) applied to indices 21,
(3) is Eq. (**) applied to indices 32.
Now, we know that g € Hom(U, U’) being given, the solution
X € Hom(G(U), G(U")) of
FiX]op=hog
is unique. Then G(ggg) o G(gzl) = G(g32 ngl) O
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Transitivity of free functors.
Piling free structures.

Cl < o ; Cz < Fas C3
U zmmmmmmme e y V
\\\\\\\ ///\(
N R \\\\) ////
J-ZU1 AN F23[V] ) /f
GalU]
-35221[\UT S~A
Ga2[Ga1[U]]

Figure: [Flg[j;;“[ul], 632[621[U]]] is a solution of the universal problem for FizFas3
Proof: In fact, Hetr,,ry (U, V) = Hom(U, Fi2F23[V]) = Hetr, (U, F23[V]), hence

existence of f € Hom(Gx[U), Fa3[V]) = Hetr,,(Ga1[U], V), hence again existence of
Uniqueness of f is left to the reader.
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First example: T = UL.

k-Mod <-F k-Lie  k-Lie «© k-AAU
M :777{ 77777777 > g g ::77f 7777777 ‘> A
PR Il TF
o o
Liex(M) U(g)

Set «© k-Mod k-Mod < © k-AAU

P VA VI S Ry
PN g T? j\\\\) T?
k(X) T(M)

T(M) =U(Lia(M))  k(X)=T(k®*®))  [a,b]:=ab— ba
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An immediate (and although rich) example/1

Piling free structures/2

© First, C; = Set (sets and maps) and C2 = Mon (monoids and
morphisms) gives you the triple (X, j21, X'™*)
Usually X, a set, is seen as an alphabet that is to say a set of non
commuting variables. Let us introduce the ring k of coefficients

@ With C2 = Mon (monoids and morphisms) and C3 = k — AAU
(k-associative algebras with unit), one gets k[M] the algebra of a
monoid M, we get the triple (M, j32, k[M]) and,

@ by transitivity of free objects with C; = Set (sets and maps) and C3
as above, we get the triple (X, j31, k(X)), k(X) = k[X*] being the
algebra of noncommutative polynomials.

© we immediately obtain that k(&X') = k[X™] is free with {w},cx+ (this
will be useful for the principal pairing)
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An immediate (and although rich) example/2

@ let us observe here that k(X') can be reached, instead of
[Set] — [Mon] — [k — AAU]

by another path, and this will provide a host of other very interesting
(combinatorial) bases.

O the preceding route amounts to the formula k(X) = k[X™*], but it can
be also proved that k(X') = U(Liek[X])

[Set] — [k — Lie] — [k — AAU]
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An immediate (and although rich) example/3

Piling free structures and dual bases

@ from the first (obvious) way (sets to monoids to k-AAU) we got the
basis {w}wex+ which provides the fine grading of k(X'). indeed to
each word w € X'*, we can associate the family

/B(W) = (|W’X)X€X € N(X)

@ therefore, due to this partitioning of the basis (of words), we get

k(X)= @ kal¥) (1)

aeNX)

where ko (X) := span{w|B(w) = a}.

14/35



An immediate (and although rich) example/4
Graded bases through free Lie algebra

I
@ each k. (X) is free of dimension %; for example with two letters a, b, we
o (p+q)!
have k(X) = EB(;W)EN2 K(p,q) (X) and dim(k(p, q) (X)) = “olgl = Z :
@ this fine grading is a grading of algebra as

Ko (X)k5(X) C kars(X) ; 1a- € ko(d) 2)

@ now through the second route (sets-Lie-AAU), we can construct many finely
homogeneous bases of k(X') using the following scheme

o pick any finely homogeneous basis of Liek[X], (P;)ics (we will
construct at least one)

o (Totally) order I and form the PBW basis (of k(X)). it is finely
homogeneous (due to eq. 2).

o Use this for MRS factorisation (unfolded below)
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Universal problem without functor: Coproducts

All here is stated within the same category C.

X f
g 4

Y
ix h(f:g)
v " XI1Y
Figure: Coproduct (jx,jv; X[ Y).
(V(f,g) € Hom(X,Z) x Hom(Y, Z))

(3 h(f; g) € Hom(X[] Y. 2))
(h(f;g) ojx =f and h(f;g)ojy =g)
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Coproducts: Sets

All here is stated within the category Set.

X f
g Z

Y
Jx Ih(f;g)

iy XUy

Figure: Coproduct (jx,jv; X U Y).

(V(f,g) € Hom(X, Z) x Hom(Y,Z))
(31 h(f; g) € Hom(X U Y, Z))
(h(f;g) ojx =f and h(f;g)ojy = g)
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Coproducts: Modules

All here is stated within the same category k-Mod.

X f
g y4
Y
Jx h(f:g)
y XY

Figure: Coproduct (jx,jv; X @ Y) here h(f;g) =f & g.

(V(f,g) € Hom(X,Z) x Hom(Y, Z))
(3 h(f;g) € Hom(X & Y, Z))
(h(f;g) ojx = f and h(f; g) ojy:g) (5)
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Coproducts: k-CAAU

All here is stated within the same category k-CAAU.

X f
g y4

' |
Jx h(f:g)

Wy XY

Figure: Coproduct (jx,jv; X ® Y) here h(f;g) = f ® g.

(V(f,g) € Hom(X,Z) x Hom(Y, Z))
(3 h(f;g) € Hom(X ® Y, Z))
(h(f;g)on:fand h(f; g) ojy:g) (6)
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Coproducts: Augmented k-AAU

All here is stated within the same category Augmented k-AAU.

X f
g Z
Y
Jx h(f;g)
Jy T XxY

Figure: Coproduct (jx,jv; X * Y) here h(f;g) = f = g.

(V(f,g) € Hom(X, Z) x Hom(Y, Z))
(3! h(f; g) € Hom(X * Y, Z))
(h(f;g) ojx =f and h(f;g)ojy = g)
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a-applications: tensor products.

©Q Here Cier = k-Mod x k-Mod, C/gn: = k-Mod.

Ax B -t » C
JL\ A }
3
A®kB

Figure: A solution of the universal problem of tensor products: A, B, C are
k-modules, f is k-bilinear (k is a commutative ring and f is unique )

@ If you look at the axioms of a-applications [2] Ch IV §3.1 (universal sets and
mappings). You see that the a-applications are kind of left module w.r.t.
the endomorphisms of Crign: (QM)) p 283), this left ideal is principal (AUi p
284) and there is unicity of the factorisation (AU|" p 284).

@ As regards the case of tensor products, the class of a-applications is that of

k-bilinear mappings from A x B — C.
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Commutative diagram in a category.

~

3=

Figure: A commutative diagram is a finite or infinite set of arrows D (with two
maps tail(?),head(?)). A path in a diagram is a sequence aj,- - - , a, of arrows
of D such that, for all 1 < j < n, head(a;) = tail(aj+1). The evaluation of a
path is the composition of its labels. A diagram is said commutative iff these
evalutations depend only on the endpoints.
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Universal problem without functor: colimit of a
commutative diagram.

Covers: disjoint unions, direct sums, coproducts, pushouts and direct
limits (inductive limits).
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Optional: an immediate (and although rich) example/5

Words and Lyndon words, details.

Algebraic structure

@ Concatenation: This law is noted conc
o With the empty word as neutral, the set of words is the free monoid
(X*, conc, 1x+)

@ The pairing between series and polynomials is defined by

(SIP) = (Slw)(Pw)

wex*

Coding by words gives access to a welter of structures, studies, relations
and results (algebra, geometry, topology, probability, combinatorics on
words, on polynomials and series). We will use in particular their complete
factorisation by Lyndon words.
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Optional: an immediate (and although rich) example/6

Words and classes

Example with X = {a, b}, a < b, in red Lyndon words (= LynX).

Length words
0 lx*
1 a, b
2 aa, ab, ba, bb
3 aaa, aab, aba, abb, baa, bab, bba, bbb
4 a*, a’b, a’ba, a’b?, aba®, abab, ab?a, ab®

ba®, ba’b, baba, babb, b’a?, b?ab, b3a, b*

Two properties of Lyndon words

O All ¢ € LynX \ X factorises (not uniquely in general) as
= 6162, ly < 62, l; e EynX
(ex. a®ba’bab = ab|a’bab = a®ba’b|ab), the one with the longest right
factor will be called standard o (¢) = (41, ¢2).

@ Every word w € X* factorises uniquely w = Eil .. .Ei,f with
b = ... = gk,(g,' € ﬁynX)
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Optional: an immediate (and although rich) example/7
Shuffle product(s)

Non deformed case

Coming from the route where k(X') = U(Liek[X]), we have a structure of
coalgebra on k(X) its comultiplication is given by its value on letters

Ap(x)=x®@1xs+ 1y @ x (8)
Then shuffle product is defined as a dual law, for each w € X* by

(P Qlw) = (P® QA m (w)) (9)
We get the following recursion for shuffle products

wmlys =1ly~mw = w for any word w € X*; (10)
aum bv = a(um bv) + b(aum v) (11)




Optional: an immediate (and although rich) example/8

Two bases in duality/1: Combinatorial constructions

Lyndon basis

Py = X for x € X,
P, = [.Ps, P,]. for ¢ € L’){nX \ & and a(?) = (s, r),
[Py = Péll...Plfkk forw:é’ll...fif,€1>-...>-€k, (¢; € LynX).

where - stands for the lexicographic (strict) ordering defined from xp < xj.

Triangular property

Indeed {Py }wex+ is lower unitriangular w.r.t. words (this property, joined
with the fact that this family is finely homogeneous, implies that
{Pw}wex~ is a basis of k(X))

P, =w+ Z c Vv with ¢, € Z (12)
vi-w,B(v)=p(w)
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Categorification and decategorification

© Categorification is better understood through decategorification.
Categorification is, so to speak a section of decategorification i.e.

[C|asses] Categorification [Category] Decategorification [C|asses]

@ Decategorification is roughly “taking the isomorphisms classes”

@ A very first example is with C = FinSet the category of finite sets
with Hom(X, Y) = YX. Here, the isomorphisms classes are indexed
by elements of N (i.e. the cardinality).

28/35



Categorification and decategorification /2

@ But N is not just a set indexing the isoclasses, it is a semiring
(N, +,0,e,1). Decategorification can be performed as follows

’ Numbers ‘ FinSet ‘
Oy 0
1y Singletons
+ LI (disjoint union)
o X (cartesian product)

@® As we have several representatives for each class so we cannot expect
true equalities for categorifications of (x + y).z = x.z+ y.z i.e.

(XUY)x Z~(XxZ)U(Y x 2)
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Conclusion

@ We have seen universal constructions w.r.t. a functor and this leads a
a left-adjoint of this functor.

@ Some universal constructions are not done w.r.t. a functor but,
always, the pattern of unique factorization is kept.

© |In particular coproducts and a-applications give rise to such
constructions

@ In the next talk we will combine what we have seen with the free
magma and tensor products to explain the meaning Mc Lane
coherence theorem.

Thank you for your attention.
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